
Parallel Checkpoint/Restart for MPI Applications

Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine
Open Systems Laboratory, Indiana University

{ssankara,jsquyres,brbarret,lums}@lam-mpi.org

Jason Duell, Paul Hargrove, Eric Roman
Lawrence Berkeley National Laboratory
{jcduell,phhargrove,eroman}@lbl.gov

Abstract

As high-performance clusters continue to grow in size
and popularity, issues of fault tolerance and reliability are
becoming limiting factors on application scalability. To ad-
dress these issues, we present the design and implementa-
tion of a system for providing coordinated checkpointing
and rollback recovery for MPI-based parallel applications.
Our approach integrates the Berkeley Lab BLCR kernel-
level process checkpoint system with the LAM implemen-
tation of MPI through a defined checkpoint/restart inter-
face. Checkpointing is transparent to the application, al-
lowing the system to be used for cluster maintenance and
scheduling reasons as well as for fault tolerance. Exper-
imental results show negligible performance impact due to
the incorporation of the checkpoint support capabilities into
LAM/MPI.

1 Introduction
In recent years, the supercomputing community has seen a
significant increase in the CPU count of large-scale com-
putational resources. Seven of the top ten machines in the
November 2002 Top500 [1] list utilize at least 2000 pro-
cessors. With machines such as ASCI White, Q, and Red
Storm, the processor count for the largest systems is now
on the order of 10,000 processors—and this increasing trend
will only continue. While the growth in CPU count has pro-
vided great increases in computing power, it also presents
significant reliability challenges to applications. In particu-
lar, since the individual nodes of these large-scale systems
are comprised of commodity hardware, the reliability of the
individual nodes is targeted for the commodity market. As
the node count increases, the reliability of the parallel sys-
tem decreases (roughly proportional to the node count). In-
deed, anecdotal evidence suggests that failures in the com-

puting environment are making it more difficult to complete
long-running jobs and that reliability is becoming a limiting
factor on scalability.

The Message Passing Interface (MPI) is ade factostan-
dard for message passing parallel programming for large-
scale distributed systems [11, 13, 15, 16, 23, 29]. Imple-
mentations of MPI comprise the middleware layer for many
large-scale high-performance applications [3, 14, 17, 36].
However, the MPI standard itself does not specify any par-
ticular kind of fault tolerant behavior. In addition, the most
widely used MPI implementations have not been designed
to be fault-tolerant.

To address these issues, we present the design and im-
plementation of a system for providing coordinated check-
pointing and rollback recovery for MPI-based parallel ap-
plications. Several factors were considered for our design.

Generality. Our design is an extension of the compo-
nent framework comprising the most recent version of
LAM/MPI [31, 32]. In general, the framework itself can
be used to support a wide variety of fault tolerance mecha-
nisms; we report on one such mechanism here. In particu-
lar, our approach integrates the Berkeley Lab BLCR kernel-
level process checkpoint system with the LAM implemen-
tation of MPI through a defined checkpoint/restart interface.

Transparency. The particular implementation of coordi-
nated checkpointing and rollback recovery that we report
here was designed with transparency in mind. That is, our
system can be used to checkpoint parallel MPI applications
without making any changes to the application code. Invol-
untary checkpointing is consequently supported.

Performance. As shown by our experimental results, the
addition of checkpointing support capabilities to LAM/MPI
has insignificant impact on its message passing perfor-
mance. And, since checkpoint support is run-time se-
lectable, it can be bypassed altogether for applications that
do not wish to use it.

1



Portability. Our implementation has been incorporated
into the most recent release of LAM/MPI, a widely used
and industrial strength open-source implementation of MPI.
Although the BLCR checkpointer is currently available for
Linux, LAM/MPI will operate on almost all POSIX sys-
tems. The general approach taken in this work will allow
it to be easily extended to other single process checkpoint
systems and to other operating systems.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses background information and related work.
The design of our system is given in Section 3 and details
of its implementation in Section 4. Performance results are
provided in Section 5. Future work and our conclusions are
given in Sections 6 and 7.

2 Background
2.1 Checkpoint-Based Rollback Recovery
In the context of message-passing parallel applications, a
global stateis a collection of the individual states of all par-
ticipating processes and of the states of the communication
channels. Aconsistent global stateis one that may occur
during a failure-free, correct execution of a distributed com-
putation. Within a consistent global state, if a given pro-
cess has a local state that indicates a particular message has
been received, then the state of the corresponding sender
must indicate that the message has been sent [4]. Figure 1
shows two examples of global states, one of which is con-
sistent, and the other of which is inconsistent. Aconsistent
global checkpointis a set of local checkpoints, one for each
process, forming a consistent global state. Any consistent
global checkpoint can be used to restart process execution
upon failure.

Checkpoint/restart techniques for parallel jobs can be
broadly classified into three categories: uncoordinated, co-
ordinated, and communication-induced. (These approaches
are analyzed in detail in [10].)

2.1.1 Uncoordinated Checkpointing

In the uncoordinated approach, the processes determine
their local checkpoints independently. During restart, these
processes search the set of saved checkpoints for a consis-
tent state from which execution can resume. The main ad-
vantage of this autonomy is that each process can take a
checkpoint when it is most convenient. For efficiency, a
process may take checkpoints when the amount of state in-
formation to be saved is small [38]. However, this approach
has several disadvantages. First, there is the possibility of
thedomino effect[25] which causes the system to rollback
to the beginning of computation, resulting in the loss of a
large amount of useful work. Second, a process may take
checkpoints that will never be part of a global consistent

P

P

P

0

1

2

P

P

P

0

1

2

m

m

m
 1

 2

 1

(a) (b)
TimeTime

m
 2

Figure 1: A message-passing system consisting of 3 pro-
cesses. (a) shows an example of a consistent global state
where messagem1 is recorded as having been sent by pro-
cessP0 but not yet received by processP1, and (b) shows
an example of an inconsistent global state in which mes-
sagem2 is recorded as having been received byP2 but not
yet sent byP1

state. Third, uncoordinated checkpointing forces each pro-
cess to maintain multiple checkpoints, thereby incurring a
large storage overhead.

2.1.2 Coordinated Checkpointing

With the coordinated approach, the determination of local
checkpoints by individual processes is orchestrated in such
a way that the resulting global checkpoint is guaranteed to
be consistent [4, 9, 18, 34, 37]. Coordinated checkpoint-
ing simplifies recovery from failure and is not susceptible
to the domino effect, since every process always restarts
from its most recent checkpoint. Also, coordinated check-
pointing minimizes storage overhead since only one perma-
nent checkpoint needs to be maintained on stable storage.
The main disadvantage of coordinated checkpointing, how-
ever, is the large latency involved in saving the checkpoints,
since a global checkpoint needs to be determined before the
checkpoints can be written to stable storage.

2.1.3 Communication-Induced Checkpointing

The communication-induced checkpointing approach
forces each process to take checkpoints based on protocol-
related information piggybacked on the application
messages it receives from other processes [26]. Check-
points are taken such that system-wide consistent state
always exists on stable storage, thereby avoiding the
domino effect [2]. Processes are allowed to take some
of their checkpoints independently. However, in order
to determine a consistent global state, processes may be
forced to take additional checkpoints. The checkpoints that
a process takes independently are called local checkpoints,
while those that a process is forced to take are called forced
checkpoints. The receiver of each application message
uses the piggybacked information to determine if it has to

2



take a forced checkpoint. The forced checkpoint must be
taken before the application may process the contents of
the message, possibly incurring high latency and overhead.
In contrast with coordinated checkpointing, no special
coordination messages are exchanged in this approach.

2.2 Other Uses of Checkpoint/Restart
The ability to checkpoint and restore applications has a
number of uses in a parallel environment besides fault tol-
erance.

Gang scheduling—checkpointing and restarting all the
processes that are part of a single parallel application—
allows for more flexible scheduling. For example, jobs have
large resource requirements can be intermittently scheduled
at off-peak times using the checkpoint/restart capability.
Without intermittent scheduling such large jobs may use all
available resources for long periods—locking out other jobs
during that time. Hence, the ability to stop and resume large
jobs allows scheduling of other available jobs in such a way
that the overall system throughput is maximized.

Process migration is another feature that is made pos-
sible by the ability to save a process image. If a process
needs to be moved from one node to another (because im-
minent failure of a node is predicted or for scheduling rea-
sons) it is possible to transfer the state of the processes run-
ning on that node to another node by writing the process
image directly to a remote node. The process can then re-
sume execution on this new node, without having to kill
the entire application and start it all over again. Process
migration has also proved extremely valuable for systems
whose network topology constrains the placement of pro-
cesses in order to achieve optimal performance. The Cray
T3E’s interconnect, for instance, uses a three-dimensional
torus that requires processes that are part of the same par-
allel application to be placed in contiguous locations on
the torus. This results in fragmentation as jobs of differ-
ent sizes enter and exit the system. With process migration,
jobs can be packed together to eliminate fragmentation, re-
sulting in significantly higher utilization [39]. Networks
with such constraining topologies have become less com-
mon recently, however IBM’s Blue Gene/L project plans to
constrain communication among processors [35], and more
cluster projects may use them in the future.

2.3 Related Work
Checkpoint/restart for sequential programs has been some-
what well studied. Libckpt [24] is an open source library
for transparent checkpointing of Unix processes. It con-
tains support for incremental checkpoints, in which only
pages that have been modified since the last checkpoint are
saved. Condor [21, 22] is another system that provides
checkpointing services for single process jobs on a num-
ber of Unix platforms. The CRAK (Checkpoint/Restart

As a Kernel module) project [40] provides a kernel im-
plementation of checkpoint/restart for Linux. CRAK also
supports migration of networked processes by adopting
a novel approach to socket migration. BLCR (Berkeley
Lab’s Checkpoint/Restart) [8] is a kernel implementation of
checkpoint/restart for multi-threaded applications on Linux.
Libtckpt [7] is a user-level checkpoint/restart library that
can also checkpoint POSIX threads applications.

In the context of parallel programs, there are ven-
dor implementations of checkpoint/restart for MPI applica-
tions running on some commercial parallel computers [6].
Some implementations are also available for checkpoint-
ing MPI applications running on commodity hardware.
CoCheck [33] is one such tool for PVM and MPI appli-
cations. It is built into a native MPI library called tuMPI
and layered on top of a portable single-process checkpoint-
ing mechanism [12, 20]. CoCheck uses a special process
to coordinate checkpoints, that sends a checkpoint request
notification to all the processes belonging to the MPI job.
On receiving this trigger, each process sends a “ready mes-
sage” (RM) to all other processes, and stores all incoming
messages from each process until all the RMs have been re-
ceived, in specially reserved buffers. The underlying check-
pointer then saves the execution context of each process to
stable storage. At restart, a receive operation first checks
the buffers for a matching message. If there is such a mes-
sage, it is retrieved from the buffer. Otherwise, a real re-
ceive operation fetches the next matching message from the
network. One drawback to CoCheck is that a checkpoint
request cannot be processed when a send operation is in
progress. Consequently, if a matching receive has not been
posted by the peer, there is no finite bound on the time taken
for the checkpoint request to complete. Also, checkpointing
could change the semantics of MPI’s synchronous sends in
CoCheck: an anticipated receive could cause the return of
the send instead of the actual receive by the application.

A checkpoint/restart implementation for MPI at NCCU
Taiwan uses a combination of coordinated and uncoordi-
nated strategies for checkpointing MPI applications [19]. It
is built on top of the NCCU MPI implementation [5], and
uses Libckpt as the back-end checkpointer. Checkpointing
of processes running on the same node is coordinated by a
local daemon process, while processes on different nodes
are checkpointed in an uncoordinated manner using mes-
sage logging.

A limitation of the existing systems for checkpointing
MPI applications on commodity clusters is that they are im-
plemented using MPI libraries that primarily serve as re-
search platforms and are not widely used. Another draw-
back of some of these checkpoint/restart systems is that they
are tightly coupled to a specific single-process checkpointer.
Since single-process checkpointers usually support a lim-
ited number of platforms, this limits the range of systems

3



on which MPI applications can be checkpointed to those
that are supported by the underlying checkpointer.

3 Design
This section presents an overview of the design of the
checkpoint/restart system in LAM/MPI. This implementa-
tion does not alter the semantics of any of the MPI func-
tions, and fully supports all MPI-1 functionality. The
checkpoint/restart system has been designed in such a way
that there is a clear separation between the checkpoint/-
restart functionality and MPI-specific functionality in
LAM. Also, the checkpoint/restart system can “plug-in”
multiple back-end checkpointers with minimal changes to
the main LAM/MPI code base, as a result of which there is
a wide range of platforms that can potentially be supported
by our system. The current implementation in LAM/MPI
uses the BLCR [8] checkpointer that is available for Linux.

3.1 Checkpointing Approach in LAM/MPI
A checkpoint of an MPI job is initiated by a user or
a batch scheduler by delivering a checkpoint request to
mpirun . The precise mechanism for delivering this re-
quest is implementation-dependent. On receiving this re-
quest,mpirun propagates this request to all the processes
in the MPI job.

LAM/MPI uses a coordinated approach to checkpoint-
ing MPI jobs. The current implementation in LAM sup-
ports a TCP-based communication sub-system (see Sec-
tions 3.2.1 and 4). Upon receiving the checkpoint request
from mpirun , all the MPI processes interact with each
other to guarantee that their local checkpoints will result
in a consistent global checkpoint. In [4], a consistent global
state is described as the set of process states and the states
of their communication channels. The approach adopted in
LAM ensures that all the MPI communication channels be-
tween the processes are empty when a checkpoint is taken.
During restart, all the processes resume execution from their
saved states, with the communication channels restored to
to their “known” empty states.

The interaction between the processes to clear the data
in the MPI communication channels uses a “staggered all-
to-all” algorithm over out-of-band communication channels
that are available in LAM, as shown in Figure 2. Ev-
ery process exchanges information about how much data
it has sent to and received from each peer, starting with
the next higher-ranked peer. This exchange then continues
with other peers in increasing order of ranks in a circular
fashion until each has exchanged this information with its
immediate lower-ranked peer. Then, based on this infor-
mation, each process receives the remaining data from the
MPI communication channels and all the in-flight data are
drained.

void bookmarkexchange()
{

int i;
struct bookmark mybookmarks;

for (i = (num procs− myidx− 1), j = 0 ; j < num procs ;
i = (i + 1) % num procs, ++j){

if (myidx > i) {
/∗ send our bookmark status, then receive∗/
sendbookmarks(i);
recv bookmarks(mybookmarks[i]);

} else if(myidx < i) {
/∗ receive remote bookmark status, then send∗/
recv bookmarks(mybookmarks[i]);
sendbookmarks(i);

}
}

}

Figure 2: Staggered all-to-all algorithm used for communi-
cating network status.

The LAM checkpoint algorithm is summarized below.
mpirun acts as a coordination point between all processes
of an MPI application, and is the process signaled by the
run-time system or user when a checkpoint is to be initiated.

1. mpirun: receives a checkpoint request from a user or
batch scheduler.

2. mpirun: propagates the checkpoint request to each
MPI process.

3. mpirun: indicates that it is ready to be checkpointed.
4. each MPI process:coordinates with the others to pre-

pare itself for checkpoint. In the context of processes
using TCP-based MPI communication channels, each
process coordinates with the others to drain the in-
flight data. For other communication sub-systems, the
processes could coordinate in a different manner to
prepare to be checkpointed.

5. each MPI process:indicates that it is ready to be in-
dividually checkpointed.

6. underlying checkpointer: saves the execution con-
text of each process to stable storage.

7. each MPI process: continues execution after the
checkpoint is taken.

The following sequence of events occurs at restart:

1. mpirun: restarts all the processes from the saved pro-
cess images.

2. each MPI processsends its new process information
to mpirun

4



3. mpirun: updates the global list containing informa-
tion about each process in the MPI job, and sends it to
all the processes.

4. each MPI process:receives information about all the
other processes from mpirun.

5. each MPI process:re-builds its communication chan-
nels with the other processes and sets them to “empty”
states.

6. each MPI process:resumes execution from the saved
state.

This algorithm has been successfully implemented using
the BLCR [8] checkpointer. The details of the implementa-
tion are given in Section 4.

3.2 LAM/MPI Architecture
LAM/MPI is designed with two major layers: the LAM
layer and the MPI layer, as shown in Figure 3. The LAM
layer provides a framework and run-time environment upon
which the MPI layer executes. The LAM layer provides
services such as message passing, process control, remote
file access, and I/O forwarding. The MPI layer provides the
MPI interface and an infrastructure for direct, process-to-
process communication over high-speed networks.

LAM provides a daemon-based run-time environment
(RTE). A user-level daemon (thelamd ) is used to provide
many of the services needed for the MPI RTE. Thelam-
boot command is used to start alamd on every node at
the beginning of an execution. At the end of an execution
session, theselamd s are killed using thelamhalt com-
mand.

User Application

MPI Layer

Operating System

LAM Layer

Figure 3: The layered design of LAM/MPI

Thelamd s provide process control for all MPI jobs exe-
cuted under LAM/MPI.mpirun launches an MPI applica-
tion by sending a request to the appropriate daemons, which
in turn fork() /exec() the application. When an ap-
plication terminates, the daemons are notified through the
standard UnixSIGCHLDmechanisms, and they relay this
information back tompirun . The LAM daemons also pro-
vide message-passing services over UDP channels.

The MPI library consists of two layers. The upper
layer is portable and independent of the communication

sub-system (i.e., MPI function calls and accounting util-
ity functions). The lower layer consists of a modular
framework for collections of systems interfaces called SSI
(see Section 3.2.1). One such collection is the MPI Re-
quest Progression Interface (RPI), which provides device-
dependent point-to-point message-passing between the MPI
peer processes. LAM/MPI includes RPIs that implement
message-passing using TCP, shared memory, gm (the low-
level message-passing system for Myrinet networks), and
the message-passing service provided by thelamd s. Figure
4 shows the LAM/MPI RTE for a two-way MPI job running
on two nodes and using the TCP RPI.

 mpirun

 MPI app

lamd

Node 0

 MPI app

Node 1

lamd

out−of−band communication channel
MPI point−to−point communication channel

TCP
socket

Figure 4: A two-way MPI job on two nodes

3.2.1 System Services Interface

LAM/MPI has recently been redesigned to provide a com-
ponent framework for various services provided by the
LAM infrastructure. This framework — the System Ser-
vices Interface (SSI) — is composed of a number of com-
ponent types, each of which provides a single service to the
LAM RTE or MPI implementation [31]. Each SSI type can
have one or more run-time selectable instances available.
Component instances are implemented as plug-in modules,
and are chosen at run-time, either automatically by the SSI
infrastructure or manually by the user, allowing a particu-
lar version of LAM/MPI to support multiple underlying in-
frastructures. Currently, there are SSI interfaces for launch-
ing the LAM RTE, MPI device-dependent point-to-point
communication layer, MPI collective communication algo-
rithms, and checkpoint/restart of MPI applications. Figure 5
shows the SSI framework, and how an MPI application can
choose between modules of each component type at run-
time.

The two component types shown in Figure 5 are the
Request Progression Interface (RPI), and checkpoint/restart
(CR). The RPI component type is responsible for all MPI
point-to-point communications. The CR component type is
the sole interface to the back-end checkpointing system to
actually perform checkpoint and restart functionality.

Although LAM has multiple RPI modules available for
selection at run-time, there is currently only one CR mod-
ule available:blcr , which utilizes the BLCR single-node
checkpointer (see Section 3.3). The design and implemen-

5



RPI SSI

LAM/MPI SSI framework

blcr

CR SSI

MPI app

shmem

 TCP

gm

lamd

Figure 5: The LAM SSI component architecture has mul-
tiple different component types. At run-time, module in-
stances will be chosen from each component type. In this
figure, an MPI process is shown selecting which modules
to use from the RPI and checkpoint/restart SSI component
types.

tation of the CR SSI and theblcr module were the main
focuses of this work.

For an MPI job to be checkpointable, it must have a valid
CR module and each of the other SSI modules that it has
chosen at run-time must support some abstract checkpoint/-
restart functionality. The internal SSI checkpoint/restart in-
terfaces were carefully designed to preserve strict abstrac-
tion barriers between the CR SSI and the other SSI modules.
Hence, the strict separation of back-end checkpointing ser-
vices and communication allows new back-end checkpoint-
ing systems to be “plugged-in” simply by providing a new
CR SSI module; the existing RPI modules (and other SSI
component types) will be able to utilize its services with no
modifications.

3.2.2 The CR SSI

At the start of execution of an MPI job, the SSI framework
chooses the set of modules from each SSI component type
that will be used. In the case of the CR SSI, it determines
whether checkpoint/restart support was requested, and if so,
a CR module is selected to run (in this case, it isblcr since
it is the only module available).

All modules in the CR SSI provide a common set of APIs
to be used by the MPI layer, and another set of APIs that
can be used bympirun . The detailed design of the CR SSI
component type is described in [27]. Broadly, these APIs
provide the following functionality:

• initialize: used by the MPI layer to attach to the under-
lying checkpointer, and register callback(s) that will be

invoked at checkpoint.

• suspend: used by the MPI application thread to sus-
pend execution when it is interrupted by the callback
thread (see Section 4.1).

• disable checkpoint: used bympirun to enter a crit-
ical section during which it cannot be interrupted by a
checkpoint request.

• enable checkpoint:used bympirun to exit a critical
section and allow incoming checkpoint requests.

• finalize: used by the MPI layer to perform cleanup
actions and detach from the underlying checkpointer.

Most of the work in the CR SSI is done in a separate
thread to allow checkpoints to be taken asynchronously
without blocking the execution of the main application
thread. In theblcr module, this thread is created by the
BLCR checkpointer when a callback is registered during
the module’sinitialize action. However, the design of the
CR SSI type does not require the underlying checkpointer
to provide this thread. If a checkpointer does not implicitly
provide a separate thread for callbacks, the module itself
can create this extra thread duringinitialize and block its
execution until a checkpoint request arrives. This design
strategy serves to reduce the requirements imposed on the
underlying checkpointing systems, thereby potentially in-
creasing the range of checkpointers that can be supported.

3.2.3 The RPI SSI

To support checkpointing, an RPI module must have to abil-
ity to generically “prepare for checkpoint,” “continue af-
ter checkpoint,” and “restore from checkpoint”. A check-
pointable RPI module must therefore provide callback func-
tions to perform this functionality. The following functions
will be invoked from the thread-based callback in the CR
SSI:

• checkpoint: invoked when a checkpoint request
comes in, usually to consume any in-flight messages.

• continue: invoked to perform any operations that
might be required when a process continues execution
after a checkpoint is taken.

• restart: invoked to re-establish connections and any
other operations that might be required when a process
restarts execution from a saved state.

Note that these functions are independent of which back-
end checkpointing system is used; for example, the actions
required for the TCP RPI to checkpoint, continue and restart
are the same regardless of which CR SSI module is selected.
The detailed design of the RPI SSI is described in [30].

6



3.3 The BLCR Checkpointer

The Berkeley Lab’s Linux Checkpoint/Restart project
(BLCR) [8] is a robust, kernel-level checkpoint/restart im-
plementation. It can be used either as a stand-alone sys-
tem for checkpointing applications on a single node, or by
a scheduling system or parallel communication library for
checkpointing and restarting parallel jobs running on mul-
tiple nodes. BLCR is implemented as a Linux kernel mod-
ule (for recent 2.4 versions of the kernel, such as 2.4.18)
and a user-level library. A kernel module implementation
has the benefit that it allows BLCR to be easily deployed
by new users without requiring them to patch, recompile,
and reboot their kernel. While the current implementation
of BLCR only supports checkpointing of single processes
(including multi-threaded processes), checkpointing of pro-
cess groups, sessions, and a full range of Unix tools will be
supported in the future.

BLCR provides a simple user-level interface to li-
braries/applications that need to interact with checkpoint/-
restart. It provides a mechanism to register user-level call-
back functions that are triggered whenever a checkpoint oc-
curs, and that continue when the process restarts (or a peri-
odic checkpoint for backup purposes completes). Two kinds
of callbacks can be registered: signal-based callbacks that
execute in signal-handler context, and thread-based call-
backs that execute in a separate thread. These callbacks
allow the application to shutdown its network activity (and
perform analogous actions on some other uncheckpointable
resource) before a checkpoint is taken, and restore them
later. Callbacks are designed to be written as shown in Fig-
ure 6.

void callback(void ∗dataptr)
{

struct my data∗pdata = (struct my data∗) dataptr;
int did restart;

/∗ Do checkpoint−time shutdown logic∗/

/∗ Tell system to take the checkpoint∗/
did restart = crcheckpoint();

if (did restart){
/∗ Actions to restart from a checkpoint∗/

} else{
/∗ Actions to continue after a checkpoint∗/

}
}

Figure 6: Template for signal-based and thread-based call-
back functions. The state of the entire process (including
the callback’s execution) is saved in thecr checkpoint
call, and restored at restart or after checkpoint is complete.

BLCR also provides user-level code with “critical sec-
tions” to allow groups of instructions to be performed atom-
ically with respect to checkpoints. This allows the applica-
tions to ensure that special cases such as network initial-
ization are not interrupted by a checkpoint. In some cases,
such atomicity is not merely a matter of convenience but is
vital for correct program operation.

4 Implementation Details
The checkpoint/restart implementation in LAM/MPI relies
on the availability of a message-passing service provided
by the LAM layer. This service is used for “out-of-band”
signaling and communication between the processes during
checkpoint and restart. Although they play an important
role during a checkpoint, thelamd s are not a logical part of
an MPI application, and are themselves not checkpointed.
The design of this system also presupposes the availability
of a threads package on the target platform. Currently, sup-
port for checkpoint/restart has been implemented only for a
modified version of the TCP RPI. However, this function-
ality will soon be extended to include all the RPIs. This
section describes the details of the implementation in the
context of the sequence of steps that occur in the system
during checkpoint, upon continuing from a checkpoint, and
when restarting from saved context.

4.1 Checkpoint
Sincempirun is the startup coordination point for MPI
processes, it was the natural choice to serve as the entry
point for a checkpoint request to be sent to a LAM/MPI job.
At the start of execution,mpirun invokes the initialization
function of theblcr checkpoint/restart SSI module to reg-
ister both thread-based and signal-based callback functions
with BLCR. The thread-based callback is required to prop-
agate the checkpoint requests to the MPI processes. This
cannot be done in signal context because the propagation of
the checkpoint request uses some non-reentrant C library
calls, and the use of non-reentrant functions from signal
context can cause deadlocks.

When a checkpoint request is sent by a user or batch
scheduler (by invoking the BLCR utilitycr checkpoint
with the process ID ofmpirun ), it triggers the callbacks
to start executing. The thread-based callback computes the
names under which the images of each MPI process will be
stored to disk and saves the process topology of the MPI
job (called “application schema” in LAM) inmpirun ’s
address space, that will be used for restoring the applica-
tions at restart. It then signals all the MPI processes about
the pending checkpoint request by instructing the relevant
lamd s to invokecr checkpoint for every process that
is a part of this MPI job. Once this is done, the callback
thread indicates thatmpirun is ready to be checkpointed.

7



In the MPI library,MPI INIT has been modified to in-
voke the initialization function of theblcr checkpoint/-
restart SSI module; this function registers thread-based and
signal-based callbacks with BLCR, that will be executed
when a checkpoint request arrives. To avoid race condi-
tions, the current implementation defines that it is not pos-
sible to checkpoint an MPI job in which one of the processes
has already completed executingMPI FINALIZE. In order
to prevent this situation from occurring, a barrier synchro-
nization has been introduced inMPI FINALIZE.

When a checkpoint request is received by an MPI pro-
cess frommpirun , the threaded callback in theblcr mod-
ule starts executing. The use of a threaded callback here
allows the application to continue even when the thread-
based callback starts executing. Another reason for using
a threaded callback is the non-reentrancy issue mentioned
above. Consequently, we have to explicitly synchronize
these threads so that the application thread does not exe-
cute an MPI call when the callback thread is quiescing the
network.

Synchronization of threads is already done in LAM/MPI
when the thread level isMPI THREAD SERIALIZED, ef-
fectively preventing multiple threads from making MPI
calls simultaneously. This is accomplished by placing a mu-
tex at the entry and exit points of all MPI library calls. This
same mechanism is reused in the checkpoint/restart imple-
mentation to prevent the application thread from calling
into the MPI library when the callback thread is perform-
ing checkpoint or restart functions, and vice versa. Hence,
all MPI applications that request checkpoint/restart sup-
port are assigned a thread level of at leastMPI THREAD -
SERIALIZED.

At checkpoint time, the callback thread in each process
waits for the application thread to exit its current MPI call
(if any), and then instructs the RPI to prepare itself for
checkpoint. It is possible, however, that the application
thread could be blocking on an MPI operation whose corre-
sponding peer operation has not been posted. To handle this
case, the callback thread of that process signals the applica-
tion thread to interrupt its blocking behavior. At this point,
the application thread realizes that it has been interrupted
by the callback thread, and yields control to it by releas-
ing the mutex. The callback thread can then trigger the RPI
to quiesce the network, and perform any other operations
that are required to prepare the process to be checkpointed.
At restart time, the interrupted MPI call is automatically
resumed without the user being aware of the interruption.
Figures 7 and 8 depict the synchronization that is enforced
between the application callback threads.

In order to drain the in-flight data on the network, each
process needs to know how much data has been sent across
a TCP socket by its peer. This is accomplished by having
each MPI process keep a bookmark for each of its peers.

Time CR Thread App Thread
ti sleeping executing outside

MPI library
ti+1 wakeup
ti+2 acquire mutex
ti+3 preparing RPI for

checkpoint
called MPI function,
blocking on mutex

ti+4 checkpoint blocking on mutex
ti+5 RPI continue/restart
ti+6 release lock, return
ti+7 sleeping acquire lock, execute

MPI call

Figure 7: Sequence of events when the application thread
is executing outside the MPI library when a checkpoint re-
quest arrives.

Time CR Thread App Thread
ti sleeping calling MPI function,

acquired mutex
ti+1 wakeup executing blocking sys-

tem call in MPI library
ti+2 try to acquire mu-

tex, failed
ti+3 signal app thread
ti+4 system call interrupted,

released mutex
ti+5 acquire mutex, pro-

ceed
blocking on mutex

ti+6 checkpoint
ti+7 continue/restart
ti+8 release lock, return
ti+9 sleeping acquire lock, resume

MPI function

Figure 8: Sequence of events when the application thread
is executing a blocking system call inside the MPI library
when a checkpoint request arrives.

8



A bookmark is a pair of integers containing the number of
bytes it has sent to and received from each peer.

At checkpoint time, the callback threads in each process
exchange the “sent” bookmarks with each of their peers us-
ing LAM’s out-of-band channel (see Figure 2). If the “sent”
bookmark received from a peer does not match the “re-
ceived” bookmark that the process has for that peer, then
there must be some messages on the network that have not
yet been received. If this is the case, the callback threads
call the RPI modules to progress the receives in their in-
ternal message-passing state machines and consume data
from TCP sockets until each “received” bookmark matches
its corresponding “sent” bookmark. The RPI’s state ma-
chine does the normal progression of MPI receive requests
by matching the posted receives with incoming messages,
and creating unexpected message buffers for unmatched in-
coming messages. For example, if a process had posted an
MPI receive before checkpoint and the message arrives af-
ter the quiesce process begins, it will be received into the
actual destination buffer when the RPI drains the network.
Hence, no secondary buffers or rollback mechanisms need
to be utilized [10]. At this time, MPI send requests are pre-
vented from making progress so that no more messages are
sent on the wire. When all the bookmarks match, the RPI
has drained all the in-flight data on the network, and the
callback thread in each process indicates that the process
is ready to be checkpointed. The underlying checkpointer
then writes the process image to stable storage. Figure 9
depicts the exchange of bookmarks and the draining of in-
flight data for a two-process MPI job.

 app (B)

lamd

Node 0

 app (A)

lamd

Node 1

"sent"
bookmarks

(1)

 app (B)

 app (A)

pending
MPI messages

Node 0

Node 1

(2)

Figure 9: Clearing the communication channels before
checkpoint. (1) processes A and B exchange the “sent”
bookmarks that they have for each other using the out-of-
band channel. (2) processes A and B receive data from the
in-band channel until their “received” bookmarks match the
“sent” bookmarks sent by the peer in (1).

4.2 Continue
After checkpoints are taken, the MPI processes are allowed
to continue execution. At checkpoint time, the TCP sockets
are not closed, so the MPI processes need not perform addi-
tional work to re-establish connections or re-negotiate per-
job parameters when they continue from a checkpoint. The
MPI library is unlocked and control is simply returned to
the application thread and processing continues as if noth-
ing happened.

4.3 Restart
When a checkpointed MPI job is restarted by invoking the
BLCR utility cr restart with the name ofmpirun ’s
saved process context, the signal-based callback function
exec() s a newmpirun . mpirun restarts all the MPI
processes from the application schema that was saved at
checkpoint-time, with the same process-topology as before
checkpointing. A signal-based callback is required here be-
cause invokingexec() from another thread would result
in a changed process ID on current Linux kernels (version
2.4 or earlier).

When the MPI processes resume execution, the thread-
based callbacks still have the MPI library locked, with
the application threads either blocked at the entry point
to an MPI function, safely interrupted in their MPI func-
tion calls, or running entirely outside the MPI library. The
checkpoint/restart implementation in LAM/MPI does not
rely on the existence of support for transparent migration of
sockets in the back-end checkpointer for performance rea-
sons and to minimize the requirements on the underlying
system. Hence, the threaded callback re-establishes new
TCP sockets with each of its MPI peers. Once these connec-
tions have been re-established, the MPI library is unlocked,
the callback thread completes execution, and the application
thread continues.

5 Performance
Experiments were conducted to measure the performance of
the checkpoint/restart system in LAM/MPI, using thering
program on an 8-node cluster of 1.5 GHz Pentium-III ma-
chines with 750MB of RAM and running Linux. Thering
program is a canonical example of simple MPI usage, which
sends a simple message around in a ring pattern. The per-
formance graphs presented here are the results of prelimi-
nary experiments that were conducted on a small scale. The
performance of the checkpointing system in LAM will be
evaluated on a larger scale in the near future and presented
in the final version of this paper.

Some experiments were conducted to measure the
overhead of adding the checkpoint/restart capability to
LAM/MPI. First, the drop in performance caused by the
addition of checkpoint/restart support to the TCP RPI was

9



measured. NetPIPE [28] was used to compare the through-
put of plain TCP RPI with that of the TCP RPI with
checkpoint/restart. The graph of throughput versus block-
size is shown in Figure 10. The percentage of bandwidth
loss in the checkpoint/restart-enabled TCP RPI as compared
to plain TCP RPI is shown in Figure 11.

100 101 102 103 104 105 106 107
10−1

100

101

102

Block size (bytes)

B
an

dw
id

th
 (M

bp
s)

raw TCP
TCP RPI (THREAD SINGLE)
TCP RPI (THREAD SERIALIZED)
CR−enabled TCP RPI

Figure 10: Performance comparison of raw TCP, plain
TCP RPI (MPI THREAD SINGLE andMPI THREAD -
SERIALIZED) and TCP RPI with checkpoint/restart
(MPI THREAD SERIALIZED)

100 101 102 103 104 105 106 107
0

1

2

3

4

5

6

Block size (bytes)

P
er

ce
nt

ag
e 

Lo
ss

 in
 B

an
dw

id
th

TCP/fast mode vs. TCP/CR/no fast mode
TCP/fast mode vs. TCP/no fast mode

Figure 11: Performance degradation of checkpoint/restart-
enabled TCP RPI (MPI THREAD SERIALIZED) and
plain TCP RPI (MPI THREAD SERIALIZED) without
“fast” mode, both relative to plain TCP RPI (MPI -
THREAD SERIALIZED) with “fast” mode.

There are three reasons for the drop in performance of
the TCP RPI with the addition of checkpoint/restart sup-
port. First, there is a “fast” mode of communication in
the RPI layer such that in certain cases when the MPI re-
quest queues are empty, LAM bypasses the entire RPI state
machine and directly uses sends and receives for perfor-

mance reasons. The current implementation of the check-
point/restart enabled TCP RPI does not support this “fast”
mode of communication, and based on running tests with
the “fast” mode disabled in the TCP RPI, it has been de-
termined that this accounts for a part of the deterioration
in performance that is seen in the graphs (see Figure 11.
However, the checkpoint/restart enabled TCP RPI will soon
be extended to include the “fast” mode of communication
which will serve to reduce this performance gap. Second,
when an MPI job requests checkpoint/restart support, the
thread level is automatically upgraded toMPI THREAD -
SERIALIZED. In this situation, LAM uses mutexes to syn-
chronize the threads, and this leads to additional overhead
due to the lock/unlock operations that need to be performed
every time an MPI call is made. A third reason for the
degradation in performance is the additional book keeping
that is done in the RPI layer to support checkpoint/restart.

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of processes

Ti
m

e 
(s

)

Figure 12: Time taken to checkpoint thering program
with varying number of processes, each running on a sepa-
rate node. The process size of thering program is approx-
imately 0.7MB.

Experiments were also conducted to measure the time
taken to checkpoint MPI jobs with varying number of pro-
cesses, and also the time to checkpoint jobs with varying
sizes. The results of these experiments are shown in Fig-
ures 12 and 13. The graph in Figure 12 indicates that
the time taken to checkpoint MPI jobs increases linearly
with the number of processes. As Figure 13 demonstrates,
checkpoint times increase linearly with virtual memory size
for processes that consume significantly less than a fourth
of the system’s memory. When the virtual memory sizes of
processes exceeds 25% of the system’s physical memory,
the timings go up by an order of magnitude. This behav-
ior has already been reported by the BLCR checkpointer
[8], and is not related to the checkpoint/restart mechanism
in LAM. A major factor in the time taken to checkpoint
the processes in an MPI job is the underlying file-system.

10



5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 13: Time taken to checkpoint 8-way MPI jobs with
varying process image sizes.

For example, checkpointing MPI jobs to an NFS file-system
performs considerably worse than checkpointing to a local
or parallel file system.

6 Future Work
Future work on this project is planned in several direc-
tions. Our first priority for future work is to implement the
“fast” mode of communication in the modified TCP RPI
and extend checkpoint/restart support to all the the remain-
ing RPIs, so that it will be possible to checkpoint/restart
all MPI-1 jobs running in LAM/MPI. The next step would
be to extend the implementation to include MPI-2 function-
ality. Later, we plan to look into the possibility of build-
ing checkpoint/restart SSI modules on top of other back-
end checkpointing systems, possibly including Condor [22],
Libckpt [24] and CRAK [40], to extend our implementation
to multiple platforms. Another possibility for future work in
this project is full support for process migration. Our cur-
rent implementation lets us restore an entire checkpointed
job on a different set of nodes in some cases, but it does
not permit us to migrate a subset of the processes while the
others are still running. While support for “real-time” mi-
gration would be contingent upon the underlying system’s
ability to do this, additional work also needs to be done in
the MPI library itself to make this possible. Finally, a long
term goal is to investigate the implementation of an uncoor-
dinated approach to checkpointing MPI jobs in LAM/MPI.

7 Conclusions
This paper presented a checkpoint/restart implementation
for MPI jobs that has been implemented in LAM/MPI us-
ing BLCR [8] as the underlying checkpointer. This imple-
mentation adopts a coordinated approach to checkpointing
jobs. The performance of this system was tested to measure

the overhead of adding checkpoint/restart functionality, and
the time to checkpoint MPI jobs. Experiments have shown
that the drop in performance caused by the introduction of
additional functionality in the MPI layer and the communi-
cation sub-system is negligible, and the time to checkpoint
jobs increases linearly with the number of processes.

The checkpoint/restart system and all other modifica-
tions to the LAM infrastructure that grew out of this project
are currently available in LAM’s CVS tree. Anonymous
read-only access is available to users who wish to utilize the
latest features in LAM/MPI. The checkpoint/restart func-
tionality is also scheduled to be included in the upcoming
LAM/MPI 7.0 release. More information on the project can
be found on the web:

http://www.lam-mpi.org/

Acknowledgments
This work was supported by a grant from the Lilly Endow-
ment, by National Science Foundation grant 0116050, and
by the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098. Brian Barrett was supported by a De-
partment of Energy High Performance Computer Science
fellowship.

References
[1] Top500 supercomputer list, November 2002.

http://www.top500.org/.
[2] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed

domino-effect free recovery algorithm. InProceedings of
the Fourth International Symposium on Reliability in Dis-
tributed Software and Databases, pages 207–215, 1984.

[3] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In J. W. Ross, editor,Proceedings of
Supercomputing Symposium ’94, pages 379–386. University
of Toronto, 1994.

[4] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems.ACM
Transactions on Computing Systems, 3(1):63–75, 1985.

[5] Y. Z. Chang, K. S. Ding, and J. J. Tsay. Efficient Imple-
mentation of Message Passing Interface on Local Area Net-
works, 1996.

[6] Y. Chen, K. Li, and J. S. Plank. CLIP: A checkpointing
tool for message-passing parallel programs. In ACM, ed-
itor, SC’97: High Performance Networking and Comput-
ing: Proceedings of the 1997 ACM/IEEE SC97 Conference:
November 15–21, 1997, San Jose, California, USA., New
York, NY 10036, USA and 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1997. ACM Press and IEEE
Computer Society Press.

[7] W. R. Dieter and J. E. L. Jr. A user-level checkpointing li-
brary for POSIX threads programs. InSymposium on Fault-
Tolerant Computing, pages 224–227, 1999.

11



[8] J. Duell, P. Hargrove, and E. Roman. The Design and Im-
plementation of Berkeley Lab’s Linux Checkpoint/Restart,
2002.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. InProceedings of
the 11th Symposium on Reliable Distributed Systems, pages
39–47, Oct. 1992.

[10] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message pass-
ing systems. Technical Report CMU-CS-96-181, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, 1996.

[11] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine,
E. Lusk, W. Saphir, T. Skjellum, and M. Snir. MPI-2:
Extending the Message-Passing Interface. In L. Bouge,
P. Fraigniaud, A. Mignotte, and Y. Robert, editors,Euro-Par
’96 Parallel Processing, number 1123 in Lecture Notes in
Computer Science, pages 128–135. Springer Verlag, 1996.

[12] Genias Software GmbH.CODINE User’s Guide, 1993.
[13] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,

B. Nitzberg, W. Saphir, and M. Snir.MPI — The Complete
Reference: Volume 2, the MPI-2 Extensions. MIT Press,
1998.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard.Parallel Computing, 22(6):789–
828, Sept. 1996.

[15] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[16] W. Gropp, E. Lusk, and R. Thakur.Using MPI-2: Advanced
Features of the Message Passing Interface. MIT Press, 1999.

[17] W. D. Gropp and E. Lusk. User’s Guide formpich , a
Portable Implementation of MPI. Mathematics and Com-
puter Science Division, Argonne National Laboratory, 1996.
ANL-96/6.

[18] R. Koo and S. Toueg. Checkpointing and rollback-recovery
for distributed systems. Technical Report TR85-706, Cor-
nell University, Computer Science Department, 1985.

[19] W.-J. Li and J.-J. Tsay. Checkpointing Message-Passing
Interface (MPI) Parallel Programs. InProceedings of the
Pacific Rim International Symposium on Fault-Tolerant Sys-
tems, 1997.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of
Idle Workstations. InProceedings of the 8th International
Conference of Distributed Computing Systems, pages 104–
111, 1988.

[21] M. Litzkow and M. Solomon. The Evolution of Condor
Checkpointing, 1998.

[22] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and Migration of UNIX Processes in the Condor
Distributed Processing System. Technical Report CS-TR-
1997-1346, University of Wisconsin, Madison, Apr. 1997.

[23] Message Passing Interface Forum. MPI: A Message Passing
Interface. InProc. of Supercomputing ’93, pages 878–883.
IEEE Computer Society Press, November 1993.

[24] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent Checkpointing under Unix. InProceedings of
the 1995 Winter USENIX Technical Conference, 1995.

[25] B. Randell. Systems structure for software fault tolerance.
IEEE Transactions on Software Engineering, 1(2):220–232,
1975.

[26] D. L. Russell. State restoration in systems of communicat-
ing processes.IEEE Transactions on Software Engineering,
6(2):183–194, Mar. 1980.

[27] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine.
Checkpoint-restart support system services interface (SSI)
modules for LAM/MPI. Technical Report TR578, Indiana
University, 2003.

[28] Q. Snell, A. Mikler, and J. Gustafson. NetPIPE: A Network
Protocol Independent Performace Evaluator, 1996.

[29] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The Complete Reference. MIT Press,
Cambridge, MA, 1996.

[30] J. M. Squyres, B. Barrett, and A. Lumsdaine. Request
progression interface (RPI) system services interface (SSI)
modules for LAM/MPI. Technical Report TR579, Indiana
University, 2003.

[31] J. M. Squyres, B. Barrett, and A. Lumsdaine. The sys-
tem services interface (SSI) to LAM/MPI. Technical Report
TR575, Indiana University, 2003.

[32] J. M. Squyres and A. Lumsdaine.
[33] G. Stellner. CoCheck: Checkpointing and Process Migration

for MPI. In Proceedings of the 10th International Parallel
Processing Symposium, Honolulu, HI, 1996.

[34] Y. Tamir and C. H. Sequin. Error recovery in multicomput-
ers using global checkpoints. InProceedings of the 1984
International Conference on Parallel Processing, pages 32–
41, Bellaire, Michigan, Aug. 1984. IEEE.

[35] T. B. Team. An Overview of the BlueGene/L Supercom-
puter, 2002.

[36] T. L. Team. Getting Started with LAM/MPI. Univer-
sity of Notre Dame, Department of Computer Science,
http://www.lam-mpi.org/ , 1998.

[37] Z. Tong, R. Y. Kain, and W. T. Tsai. Rollback recovery
in distributed systems using loosely synchronized clocks.
IEEE Transactions on Parallel and Distributed Systems,
3(2):246–251, 1992.

[38] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. K. Fuchs. Check-
point space reclamation for uncoordinated checkpointing in
message-passing systems.IEEE Transactions on Parallel
and Distributed Systems, 6(5):546–554, 1995.

[39] A. Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey.
System Utilization Benchmark on the Cray T3E and IBM
SP, April 2000.

[40] H. Zhong and J. Nieh. CRAK: Linux checkpoint / restart as
a kernel module. Technical Report CUCS-014-01, Depart-
ment of Computer Science, Columbia University, 2001.

12


	Introduction
	Background
	Checkpoint-Based Rollback Recovery
	Uncoordinated Checkpointing
	Coordinated Checkpointing
	Communication-Induced Checkpointing

	Other Uses of Checkpoint/Restart
	Related Work

	Design
	Checkpointing Approach in LAM/MPI
	LAM/MPI Architecture
	System Services Interface
	The CR SSI
	The RPI SSI

	The BLCR Checkpointer

	Implementation Details
	Checkpoint
	Continue
	Restart

	Performance
	Future Work
	Conclusions

